
INTEGRATING MULTIPLE SOURCES OF
KNOWLEDGE INTO DESIGNER-SOAR,

_ AN AUTOMATIC ALGORITHM DESIGNER

CTechnical Report AIP - 52

David Steier & Allen Newell

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pa. 152131

The Artificial Intelligence
and Psychology Project

DTIC.
ELECTF

Departments of MAR141990
Computer Science and PsychologyCarnegie Mellon University E"
Learning Research and Development Center
University of Pittsburgh

Approved for public release; distribution unlimited.

90 03 12 010

INTEGRATING MULTIPLE SOURCES OF
KNOWLEDGE INTO DESIGNER-SOAR,

AN AUTOMATIC ALGORITHM DESIGNER

Technical Report AIP - 52

David Steier & Allen Newell

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pa. 15213

Acoesslom For

NTIS GRA&I
DTIC TAB
UL. iuneod - June 1988
Justifloatin.

Distribution/

Availability Codes -'~

Avail and/or C T L C E.-
list ~ O1B1MAR 14i

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678, and by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 4976 under contract F33615-87-C-
1499, and monitored by the Air Force Avionics Laboratory. The research was also
supported in part under a Schlumberger Graduate Fellowship to David Stcicr. The views
and conclusions contained in this document are those of the authors and should not be
interpreted as representint the official policies, either expressed or implied, of the
Defense Advance Research Projects Agency, Schlumberger, or the U.S. Government.
Reproduction in whole or in part is permitted for purposes of the United States
Government. Approved for public release; distribution unlimited.

Unclassii ied
SICUMTY LASSIFICATI

O N OF "WIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DiSTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIrCATION I DOWNGRAODNG SCHEDULE Distr ibut ion unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AIP-52

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable) Computer Sciences DivisionCarnegie-Mellon University Office of Naval Research

6C. ADDRESS (City. State and ZIP Code) 7b ADDRESS (City. State. dnd ZIPCode)
Department or Psychology 800 N. Quincy Street
Pittsburgh, Pennsylvania 15213 Arlington, Virginia 22217-5000

Ga. NAME OF FUNDINGISPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Same as Monitoring Organizatio N00014-86-K-0678

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS p4000ub201/7-4-86
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO. ACCESSION NO

N/A N/A N/A N/A

11 TITLE (Include Security Clastfication)

Integrating Multiple Sources of Knowledge into Designer-Soar, an Automatic Algorithm Desi ner
12 PERSONAL AUTI-OR(S) David Steier and Allen Newell

13a. TYPE OF REPORT 13b. TIME COVERED J14 DATE OF REPORT %Year, Month, Day) IS. PAGE COUNT
Technical FROM 86Sept.15To91SePt 1 July, 1988 6 pages

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBjECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP lgorithm design, weak methods; knowledge; Soar; Designer-

Soar - a, .J 7k.-. -. , : . ' c1 'I

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Designing algorithms requires diverse knowledge about general problem-solving, algoritha
design, implementation techniques, and the application domain. The knowledge can come from
a variety of sources, including previous design experience, and the ability to integrate
"knowledge from such diverse sources appears critical to the success of human algorithm de-
signers. Such integration is feasible in an automatic design system, especially when sup-
ported by the general -problem-solving and learning mechanisms in the Soar architecture. Our
system, Designer-Soar, now designs several simple generate-and-test and divide-and-conquer
algorithms. The system already uses several levels of abstraction, generalizes from example
and learns from experience, transferring knowledge acquired during the design of one
algorithm to aid in the design of others. 4,,

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDIUNLIMITED IM SAME AS RPT [OTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Alan L. Meyrowitz (202) 696-4302 N00014

DO FORM1 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFI ATION OF THIS PAGE
All other editions are obsloetU s

Unclassified

, In Proceedings of the National Conference on Artificial Intelligence, August, 1988.

To Appear.

Integrating Multiple Sources of Knowledge
into Designer-Soar,

an Automatic Algorithm Designer 1

David Stler and Allen Newell
Department of Computer Science

Carnegie Mellon University
Pittsburgh. PA 15213-3890

Abstract 2. The Need for Knowledge Integration in Algorithm
Design

Designing algorithms requires diverse knowledge about general By knowledge we mem the information about some domain.
problem-solving. algorithm design. implementation tec'inique and abstracted from the representation used to encode it and the process-
the application domain. The knowledge can come from a variety of ing required to make it available [201. A knowledge source is a
sources, including previous design experience. and the ability to system that provides access to a body of knowledge. A knowledge
integrate knowledge from such diverse sources apper critical to s hast spoi Z represmstation ut ihe knowledge, comprising
the success of humn algorithm designers. Such integration is both symbolic structures and the mean for interpreting them to
feasible in an automatc design system, especially when supportd influence actions, when appropriate. The problem of integration of
by the general problmn-solving ad learning mecharsms in the Soar multiple soures of knowledge arises from the diversity of represen-
architectme. Our system. Designer-Soar, now designs several tation of the sources, each of which may differ from the represen-
simple generate-and-test and divide-and-conquer algorithms. The tation used to select actions to attain the goals of the system. It is
system already uses several levels of abstraction, generalizes from always much easier to design a system with a single source of
examples, and learns from experience, transferring knowledge ac- knowledge, where the representation for action selection can be
quired during the design of one algorithm to aid in the design of directly adapted to it.
others.

The kinds of knowledge relevant to algorithm design are

1. Introduction described below. Table I gives typical processes in design systems

The frontier of artificial intelligence research has recently been that apply this knowledge.

described as "figuring out how to bring more kinds of knowledge to K1. Weak methods: Designing algorithms requires solving
bear [181". This paper addresses the question of how to bring more problem. Human problem solvers (but generally not automatic
kinds of knowledge to bear in an automatic algorithm design sys . systems) usually manage to make some progress, even if they don't
A designer should be able to use knowledge about general problem- have all the knowledge necessary in the form of powerful domain
solving, algorithm design, implementation techniques, the applica- speifi thnqu es sr to we mormof su a n
tion domain and prior experience. We describe a system, Designr- specific testiques. They resort to weak methods, such as genera-
Soar, that both applies knowledge from these different sources and nlg and tesmig many solutions, depth-first search etc. Human
acquires knowledge for trsfer to future problems. We adapt and algorithm designers show particularly heavy use of mefn b s-ends
extend techniques used in Designer [91, an initial implementation of aunt ysts [n11]. Tth ork to reucthe differences between the
an algorithm design system and exploit the special properties of the current state and the goal stat, resulting in problem solving driven
Soar architecture (13]. by difficulties and Oportunites detected.

The focus of this research is on the design o, '2 c, ;nu, rather K2. High-level algorithm schemes: Algorithm designers usually

than their imlnenfatio. We define algorithm ' a to be the begin to attack a problem using design schemes. A common ex-

process of sketching a oomputationally feasible technique for ac- ample is divide-and-conquaer splitting a problem into subproblems.

complishing a specified behavior (9]. Given such a sketch. a solving the subproblems separately, and merging the solutions to

programmer may then proceed to an efficient implementation of the solve the original problem [241.

algorithm. Although we focus on the early design stages of the total K3. Transformations: Once some procedural representation of
programming process, we expect similar issues of multiple the algorithm exists, other knowledge suggests ways to reformulate
knowledge sources to arise in later stages as well. and refine the procedure into a better solution. One generally

applicable transformation is recursion formation as used in [151.
Transformations more specific to particular situations have been
collected in libraries of rules [31 or programming overlays that show

'Thi reserh was sponmomd by the Defense Advanced Rmaeach Pojecm Ageiy correspondences between plans (211.
(DOD). ARPA Order No. 4976 unde contact F33615-87-C-1499. and nmtmod by
the Air Form Avzamt LAboruory. The reearh was also supportd in pan under a K4. Correctness: Knowledge suggesting transformations to apply
S inU Odti um n tfheo Ao iP to YIad St sh uld oetb intd ,prtedas is complemented by other knowledge asserting the applicauon of acogUi.d n this doaamai aiw dom a the asahom and ahauld not be iapm

repnung the official pom. a expms or unpied. of the defame AdvaMod transformation will satisfy some design goals. Particularly in
Rmeamb Pmrmoye Agency. Schuinbarer. or de U.S. Goveanug.

General area Knowledge Typical processes
I for applying knowledge

Problan lving K]I. Weak methods Predefined search procedure
Algorit/u design K2. High-level algorithn schemes Instantiation of design templates
and implemenuu

(3. Transforauions Application of transformaton rules

K4. Correctness Testing designs, proofs

KS. Efficiency Performance analysis

K6. Target language and architecture Application of selection rules
Application domain K7. Domain definitom Inference from domain axioms

KS. Domain procedure Generalization from examples
Past mzwience K9. Learned knowledge (KI - K8) Derivanmial analogy

Table 1: Knowledge sources in algorithm design
derivation systems developed by the program transfornation corn- Each type of knowledge has been incorporated into at least one
munity, transfonation are known to preserve desired semantic system for automating algorithm design or other phases of program-properties in program descriptions. But sometimes there is no ming. Table 2 indicates the degree to which such systems
knowledge that any known uwsformations preserve the desired (including Designer-Soar) integrate multiple sources of knowledge.
Property. One way to acquire this knowledge is to prove the =uns- The top half of the table lists systems that emphasize algorithm
formation correct; another is to apply a trnsformation and test the design: Designer-Soar, Designer [101, Cypress [241, Cypress-Soar 2

results by executing the resulting design [261. [251, MEDUSA [16], and STRATA [141. The second half of the

K5. EMclency: Knowledge about efficiency may take several table lists systems that emphasize other parts of programming:KS, ffiieny: Kowldgeabot eficincymay akesevral DEDALUS [151, PSI/SYN [121, Glitter [71, (b,, X [41, KBEMACS

forms. It is useful to know that extra effort devoted to finding a DUS [1 91
divide-and-conquer algorithm may ultimately yield a more efficient [281 and DRACO [191.
algorithm than a generate-and-test scheme [9]. The balancing The table shows that no single system integrates all the sources of
principle, which applies specifically to divide-and-conquer al- knowledge. Weak methods, domain procedures, and learned
gorithms. state that the optimal divide step produces subproblens of knowledge are used most infrequently. As expected, the systems
equal size. that emphasize algorithm design use less knowledge of the target

language and architecture than the other systems. Also, those sys-intend target lnguag and architecture Kinolee i tabt the tems most strongly driven to handle difficult real-world problems
intended target language and arhiteoure is nly iportant inthe are the ones that incorporate (or plan to incorporate) the most types
late (coding) stages of program synthesis [3, 41. However, he of knowledge. This is particularly tae of O.x, which is intended
availability of certain language features (e.g, bit operations) May to produce usable oil well logging software, and DRACO, which has
influence the choice of algorithm used; architecmral features (e.g, been used for the analysis of domains such as real-time tactical
parallelism) may create opportumiies for using algorithms that display systems.
would be otherwise impossible.

K7. Domain definitions: As with programming in general [4), 3. The Task of Algorithm Design in Designer-Soar
algorithm specification and design require domain knowledge. For The problem-solving architecture is critical to a system that per-
example, in specifying a sorling algorithm Clark and Darlington use mits integrating multiple. diverse knowledge sources. The Soar
logical axioms and lemmas to give the semantics of the terms architecture (131 appears to have the requisite generality. Soar sys-
ordered and permwation [5). Other types of domain knowledge tems have solved problems and learned in domains ranging from the
provide performance constraints, input data characteristics, etc. traditional Al toy problems such as the eight-puzzle to more com-

plex knowledge-intensive tasks. such as part of the VAX configura-
K& Domain procedures: Human designers invariably under- ton performed by the RI expert system (22]. Soar also provides a

stand the algorithm specifications procedurally. No one designs a way to explore transfer of learned knowledge both within a design
sorting algorithm who does not know how to sort. Novice LISP and between designs.
programmers often solve sample problems by hand, and then map
the structure of their hand solution onto LISP [1. Using examples Soar represents tasks as search in problem spaces: sets of states.
provides a focus of attention for reasoning, excluding irrelevant with operators that move from state to state, and the free ability to
attributes and imrealistic situations that might result from exclusive search within the space for a desired state that epresents task
use of an abstract domain theory [171. accomplishment. Knowledge is embodied in producuons. which are

used to select problem spaces, states, and operators. Productions
K9. Learned knowledge (KI - KS): Human designers learn from also implement simple operators, complex operators being treated as

experience, acquiring knowledge ranging from specific sub-
procedures to general design techniques. The imporance of reuse
for automation of programming is commonly recognized CynMm-Soar mi Damusi-Saan ba h Som,.bwW aitnthm diagi. Cypr.-
[2, 6, 7, 191, but we are only beginning to understand how Soar amm the um o(a deducuve engun to fomaly drove divide-and.camquw

gantumu, whi Dmgnr-Soar dngnm dmeW and aohr ilgonduns atnho such aautomatic programming systems can learn (8, 25]. dedocuve uaqm Myiag hmavly on fie um of examtm as a souce of knowladgs.

SYMON KI. K2. K3. K4. K5. K6. K. K8. K9.
Weak Algorithm Trms- Conecutess Efficiency Target Domain Domain Learned

meudal scuea fonmmss language definiuins procedurs knowledge
Designer- + -+ + +.

Soar

Desitpr - + + - +

Cyp e + + +--

Cypnws-Scv + + +.

MEDUSA +. + +

STRATA -- -- --

DEDALUS - . + +

PSIVSYN + + + +

Glitter - + + -+

+ + + + + + +

PA - + +

DRACO + + + -- + + .

+ = Knowledge applied in system
- = Knowledge applied to a small degree

- Knowledge application plumed for system

Table 2: Knowledge integration in algorithm design and automatic programming systems

casks, which we accomplished in appropriate problem spaces. With Soar designs the algorithm by working in the computational space
insufficient or conflicting knowledge, Soar reaches an impasse and until it can perform the task (e.g., sorting) in a functionally equiv-
generates a subgoal to resolve it. When subgoals are terminated, alent way to the domain-space algorithm, while satisfying the given
Sow learns from the experience by building new productions. constraints. The chunks that are learned for the target computational
chunks. The left-hind side of a chunk consists of generalized spaces implement an algorithm.
conditions on the working memory elements used in producing the
results of the subgoal. If these conditions become true again, the 4. Knowledge Integration in Designer-Soar
chuk will fire to summmatically apply the knowledge from the We will discuss knowledge integration in Designer-Sor by the
previous solution, and avoid the subgoaL Transfer of knowledge example of designing insertion sort, which Designer-Soar syn-
occus because the chunk's conditions abstract away fn inessen- thesim in the sam form as that creatd by Cypress [231 and
nal features of the original situation. Cypress-Soar [251. The algorithm is two divide-mnd-conquer al-

Design tasks are given to Designer-Soar in tens of two set of gorithins, one for the top level sort function and one for inserting anproblem spaces. One defines the compta oa inmodel; its operators element into an ordered sequence (the composition subprocedure).re the piitives in which to express the algorid. The other Sort takes a sequence of elements to be sorted as inpuL If thedefnm the applicati n domain of the algorithm. The desired be- sequence is empty, it is retnned directly as already sorted, otherwise
havior of the algorithm cn be operationally specified by the system the seuence is split int its tnst eiemet and the rest of the se-
knowing how to perform the task in the domain. Thus. Designer- qience. The first element is then inserted into the result of recur-
Soar understands sorting if it can sort sequences in the domain sively sorting the remainder of the sequence. Insert takes an ele-
space. The algorithm design task is to express sorting in the com- ment md an ordered sequence as input. If the sequence is empty,
putaional model. which (for algorithm desgn. as op dto p- the function returns a sequence containing only the element; other-
granming in a specific language) is a space that has abstract wise, a conditional subprogram is called to decompose the input into
operators that correspond to the capabilities of computers. The total smaller subproblem. The subprogram compare the value of the
specification of the design task may require additional subspaces to element parameter to the value of fin element of the sequence
define the operators and additional operatnal knowledge about parameter. If we assume x0 corresponds to the smaller element, x,
how to work within the two main spaces. Additional constraints to the larger element., and z2 to the remainder of the sequence, the
may come from performance requirements on the algorithm or from conditional returns a pair of the form <zb.<xjx2>>. The first
resource limitations on the design process itself. parameter is then prepended to the result of recursively calling the

insertion function on the second parameter (the nested pair).
This definition of the task of algorithm design separates the un-

derstanding of what the algorithm is to do from the creation of an The target computational model space has dataflow operators that
algorithm within some computational framework. If Designer-Soar correspond to the conceptual building blocks for algorithms, such as
does not know how to sort at all, then it must first acquire that rest a data item for some predicate, and apply some function to
understanding, which will occur as a capability within the domain data(1l]. Algorithm schemes can be encoded procedurally as
space for sorting. namely, a space of abstract sequences. Designer- higher-level operators that aem implemented in terms of these build-

Choice Effects of choice Rationale for choke Knowledge used
(decsion

cycle)

Cl. (145) Specification: Sort integer sequence Domain procedure acquired by TAQ K7. K8

C2. (216) Sort scheme: Divide-and-conquer Abstract lookahead KI. K2, K4, K8
C3. (227) Sort DivConq form: Simple decom- Pre-selected preference K2, [KS

pose
C4. (227) Sort decomposition: FirstRest Pre-selected preference K3, K6
C5. (228) Sort decomposabity test: FirscRest decomposes example in- K4. K7

Leng th(np-P'>0 put
C6. (285) Sort directly-solve: Id Domain op says empty sequence is K4. K7, K8

sorted
C7. (354) Insertion scheme: Divide-and-conquer Abstract lookahead Ki, K2. K4. K8. K9
C8. (365) Insertion DlvConq form: Simple Pre-selected preference K2, [K5]

compose

C9. (366) Insertion decomposability test. Can't decompose empty sequence K4, K7
Length(seq-param) >O

CIO. (410) Insertion directly-solve: Cons Cons returns desired result KI. K6, K8
Cl. (535) Insertion decompose scheme: Con- Domain execution shows two pos- K1, K3, K4. K8

ditional sibilities for returning results

C12. (557) Insertion decompose predicate: Need ordered result for composition K4. K7, K8
int-pw'am F i r s t(seq-param)

C13. (582) Insertion decompose true branch: Ensure smallest element moved to front K3, K4. K9
mt.param first in returned result in example

C14. (701) Insertion decompose false branch: Ensure smallest element moved to front K.3, K4, K9
First(seq-param) first in retmned in new example
result

C15. (750) Insertion composition: Cons Cons returns desired result KI, K6. K8

Table 3: Insertion-sort design in Designer-Soar
ing blocks. For example. Designer-Soar has compose aid dure and the partially designed algorithm at varying levels of
decompose operators that correspond to decomposing problems abstraction. The results of the executions are used to detect
into subproblems. and composing subproblems solutions to get the problems and opportunities that guide the design, so that the dcsign
answer to the original problem.. These are not implemented directly process can be characterized more as means-ends-analysis than as
by productions. When attempting to apply these operators in ex- strict top-down refinement.
ecuting an algorithm, an impasse results, with a corresponding sub-
goal to acquire the knowledge to implement them. Designer-Soar Designer-Soar first attempts to execute the insertion-sort algo-
knows an algorithm when it can select and implement the ap- rithm (which doesn't exist yet) to see what needs to be done. An
propriate daaflow operators to compute the correct output given any impasse is generated because Designer-Soar has not yet learned how
legal input. This uniform procedural representation of abstractions to select between the computational operators it could apply as a
at levels varying from algorithm schemes down to computational first step. While resolving this impasse, Designer-Soar learns that
primitives is crucial to knowledge integration in Designer-Soar. the algorithm should have the functionality of the high-level domain

operator "sort a sequence into nondecreasing order." Designer-The design of insertion sort is summarized in Table 3. Column I Soar already has the knowledge to implement scr- in domain
labels the design choice and gives the decision cycle at which the spaces. but acquires the knowledge to select the sor operator for
choice occured. The decision cycle is the basic unit of problem this run by translating an external task description into an internal
solving effort in Soar (the entire run takes 883 decision cycles, description of the operator selection knowledge, and then nicr-
requiring about 35 minutes on a Sun3/260). Column 2 summarizes preting this description to build a procedural representation of the
the design choices; column 3 gives Designer-Soar's reasons for knowledge as an operator selection chunk [291.
making the choice. Column 4 lists the types of knowledge used for
each choice. We describe the design process in more detail in the Knowledge that the algorithm must sort is used to selct an
following subsections, operator to apply in the computational space. The operator 'clccted

implements the first step of divide-and-conquer: a test to check :t he
4.1. Acquiring the specification and a plan (Cl - C2) input is decomposable. The operator is selected according :o .he

The goal of algorithm design is to be able to know what to do to results of a subgoal to evaluate the choice by lookahead. i.e.. ,raing
execute the algorithm on any valid input. Designer-Soar makes out the operator to see if it leads to a final state. The exact :-st tor
design choices while repeatedly executing both the domain proce- decomposability is not yet known, and no concrete oxar-'i,2 has

been produced to refme it. Therefore, the lookahead takes place in cuirent example, it knows that the purpose of the execution is not
an abstacted version of the computational space, in which the only to obtain the answer, but also to exercise the execution paths so
operators can be applied without knowing the missing details3. Cur- that it learns the algorithm. In finding that the test for decom-
rently, Designer-Soar only uses type knowledge in abstracted cxecu- posability renuns false, it remembers it must come back to find out
tion, but we expect to propagate efficiency constraints as well. what happens when a test returns true. It generates a new example

to force the execution down the untied path, adding an element to
42- Designing the top level sort (C3 - C6) the sequence to make it decomposable.

Given the decision to execute a divide-and-conquer algorithm.
Designer-Soar attempts to apply the first step, testing for decom- In processing the new example and looking at the results of
posability. The test is not known, but the system knows that execu- domain execution, the system discovers that it needs to handle
tion on oncrete examples is useful for refining tests. so a new several cases separately for the decomposition. This leads to a
execution pas is begun. An example of the input required, a conditional algorithm, where inputs are an element and an ordered
sequence of integers is incrementally generated by adding elements sequence. Another execution pass refines the predicate of the con-
to an initially empty sequence until it has two elements. Designer- ditional to compare the value of the element to the value of the first
Soar knows that sequences with two or more elements will probably element of the sequence, and also refines the true branch to ensure
not be boundary cases (in contrast to zero or one elements). To find that the smaller of the two elements is moved to the front. Some of
the test for decomposability, Designer-Soar looks ahead for a pos- the knowledge learned in refining the true branch is used together
sible decomposition operator. We have told the system to select the with a new example to refine the false branch analogously. While
SirstRest operator for decomposition in this case (which leads to finishing the design, the composition operation of the insertion is
insertion sort rather than other sorting algorithms), splitting off the refined to Cons the element (known to be smallest) to the front.
first element from the sequence containing the second eement. The
precondition for applying FirstRest - that the sequence has at 4.5. Learning
least one element - is used as the test for decomposability. Prior experience is a significant source of knowl -4ge for design.

Soar's learning mechanism, chunking. is so tightly integrated into
The subproblems from this decomposition are then solved. The Designer-Soar that the boundary between problem-solving and

first subproblem is an element rather than a sortable sequence. and is learning has disappeared: designing an algorithm is equivalent to
passed to the composition as is. The remaining subproblem is a learning to execute it and the current Designer-Soar requires that
sequence and test-case execution is recursively invoked to sort it. It chunking be on to run. However, a slightly earlier version of
is decomposed into an element and an empty sequence. The test for Designer-Soar did permit no-chunking runs so as to isolate the
decomposability applied to the empty sequence returns false, so it effects of learning. Figure 4-1 shows the cumulative problem-
must be sorted directly. Applying the domain operator to sort the solving effort needed to design two simple algorithms in sequence,
empty sequence shows that the computational space operator Id with and without chunking. On the left, the first algorithm finds the
(identity) operator has the necessary functionality, subset of elements satisfying a given predicate in a given set, the

second finds the intersection of two sets. On the right, the two
4.3. Designing the insertion algorithm (C7 -C1O) algorithms are insertion sort and merge sort. There is a significant

While making these selection and implementation clices, savings from learning in both pairs of algorithms: 28% for the set
Designer-Soar learns chunks. Because of the execution pohs fol- algorithms and 69% for the sorting algorithms, illustrating that the
lowed so far. the chunks learned encode the entire structure of the benefits of learning increase as the designs get mo complex. Fur-
top level of the insertion sorting algorithm. However. an impame thermore, the slope of the learning graph decreases during the design
arises when the system tres to combine the element and the sorted of the second algorithm in each pair. suggesting transfer across. as
remaining sequence, because it does not know how to implement the well as within, the similar designs. We found that without the
necessary Compose operator. It decides to implement the operator chunks from the design of insertion sort. the learning rni for merge
by divide-and-conquer, making the selection by the same abstract sort takes 860 decision cycles, an increase of 56% over the 551
lookahead planning used for the higher level algoritun; indeed some needed with those chunks.
of the chunks learned then now apply, speeding up the problem-
solving. showing the integration of learned knowledge. To refine wooo 600
the insertion subalgorithm further. the 2-element example from the , /It2
higher-level execution context is used again. We told the system to 400. NOea11mg 4000
assume the decomposition for insertion would have to be custom / No leamig/
designed and that the composition would be selected from simple 20 Learing 2000 Lu, =R

known operators. In fact. decompose need not be applied for the I ,0e
current input, which is an element and an empty sequence. The Sutbs mua esuon , sor
check for the empty sequence is made into a test for decom- 1 2 a n 2
posability. A comparison to results of execution in domain space A Algorth-a dosfgnid Algorithms designed
shows that the operator Cons suffices to insert an element into an
empty sequence. Figure 4-1: Effects of learning in Designer-Soar

4.4. Designing the decomposition of the insertion 5. Summaryalgorithm (CiI - C15) 5 u mr
Though Designer-Soar has solved the problem of insertion for the Returning to our list of knowledge sources, we summari'e ihemechanisms used for integrating each source into Desig.cr-Soar.

The Soar architecture directly supports access and use of two of jhe
'A uimlr use of ANeMuum in Soar ha hem decmbed for a pa"ra mmnplanm- knowledge sources: weak method search (K1) results from Soar's

tatac of RI. the VAX configuan expet systan (271. default behavior in knowledge-lean situations, and !,earned

knowledge (K9) is applied when chunks fire. The problem spaces 1.Kn.E n asoD .Terfnmn aaim h
that ame specific to Designev-Soar support integration of the other innaconocdngadfiieykowde pgrms-
sources. Knowledge of the high-level algorithm schemes (K2) and thesis. In Interactive Programmning Environments McGraw-Hill,
of possible transformations (K3) is encoded in the operators in the New York. 1984, pp. 487-5 13.
computational spaces. Similarly, knowledge about application 1.Lu,3 . eel . n oebom .S Sr:A

doman dfintios ad prcedres(K7andKS) S ~~ibdie inarchitecture for general inrelli gence'. Artificial Intelliveice 33, 1
structure of the domain spaces. Concerns of correctness (K4) are (97m.4
addressed by execution in both computational and domain spaces.
and means-ends analysis on the results. Though we have not yet 14. Lowry, M. R. Aleprithin synthesis through problem refor-

focused on knowledge about efficiency (K5) or the target language mutation. Proceedings of the National Conference on Articial
and architecture (K&) therc is a clear role for inegruing ths Intelligence, August. 1987, pp. 432-436.

sources in terms of selmdton knowledge in the computational space, 15. Manna. Z. and Waldinger, R. "Synthesis: dreams =>
or even computational spaces with different functional operators. programs". IEEE Transactions on Software Engineerbig SE- .4

(1979). 294-328.
Currently, Designer-Soar designs both generate- and-test and

divide-and-conqluer algorithms, but only simple instances ofeach 16. McCartney, R. D. Synthesizing algorithm with performuance

We arm now reorganizing Designer-Soar to give it greater genicralit constraints. proceedings of the National Conference on Artificiail

and robustness. Wd expect that the results we obtain in integration InelgcAust197p.1559
of multiple knowledge sowrcts, including learning. will have im- 17. Mivhell, T. M., Keller. R. M.. and Kedar-Cab& 1't. S. 1T.
plicarions not only for algoiWi design, but for other applications as 'Explanation-based generalization: A unifying viev.-". Machirne
well. Learning 1, 1(1986), 47-80.

1I. Mostow, D. J. -What is AI? And what does it have todo with
Acknowledgement software engineering?*. IEEE Transactions on S.ware En'ginseer-

We thank Erik Altmann. Gregg Yost and Kathy Swedlow for their ing SE-lI, 11 (1985), 1253-1256.

commntson arler raft ofthi paer.19. Neighbors, J. 'T7he Dracco approach to constrcting software

from reusable components'. IEEE Tranacions on Software En-
References gineering SE-IC, 5 (1994). 564-574.

1. Anderson, J. R.. Farrell, R., and Sauers, R. "Learning to program 20. Newell, A. "The knowledge level", Artificial Invelliqen,,. 18. 1
in LISP". Cognuitive Science 8, 2(1984). 87-129. (1982), 87-127.

2. Balzer, R. "A 15-year perspective on automatic programming". 21. Rich, C. Inspection methods in programming. Tech. R .

IEEE 'Transactions on Software Engineering SE-1l, 11 (1985), AI-TR 604. Massachusetts Institute of Technology, June. 1l)'Il.

125-128.22. Rosenbloom. P. S., Laird. 3. E., McDermott, 1,. Newt!. A., and

3. Barstow, D. R.. Knowldedge-Based Program Construction. Orciuch. E. "RI-Sox&: An experimnent in know!,Age-intm-nzle pro-
North Holland Puzblishing Company, Amsterdam. 1979. gramming in a problem-solving architecture". IZEE Trans.--tionis

4. Bnto, D.R. Doman-sacifc atomaic rogrmmig".on Pattern Analysis and Machine Intelli Igence 7,5S (1985), 5 .- 569.

IEEE Transactions on Software Engineering SE-li, 11 (1985), 23. Smith, D. R. Top-down synthesis of simple divide-anc'.-conquer
1321-1336.algorithms. Tech. Rept. NPS52-82-01 1. Navy Postgraduattu School.

S. Clark, K. and Darlington. J. "Algorithm classification through November, 1982.

synthesis. oueJural23. 1 (1980), 61-65. ol o 24. Smith. D.R '"Top-owsynthesis ofdivid-and-conqi_:

6. Dietzen. S. R.. and Scherlis, W. L. Analogy in program develop- algorithms". Artificial Intelligence 27, 1 (1985), 43-96.

Ment.Poeeig of theSeodCneeconteRlofLn25 ti.D.M yresSaAcaesuynsachnd!r-
guage in Problem Solving, April. 1986. pp. 95-113. ing in algorithm design. Proceedings of the Tenth lntcffnatiortal

Join Cofereceon Artificial Intelligence, August. 1987, pp,
7. Fickas, S. "Automating the tranformational development of 327-330.
software". IEEE Transactions on Software Engineering SE-Il, 1I
(1985), 1268-1277, 26. Steier, D. M. and Kant E. 'The roles of execution and inalysis

in algorithm design". IEEE Transactions on Software Enp.'aeering'
8. Hill1. W. L Machine learni~ig for software reuse. Proceedings of SE-il, 11 (1985). 1375-1386.
the Tenth International Joint Conference on Artificial Intelligence.
Augus.'t 1987, pp. 338-344. 27. Unruh. A., Rosenbloom, P. S.. and Laird. J. E. Dynamic

abstraction problem solving in Soar. Proceedings 0:' the Third
9. Kant, P. "Understanding andi aujtomating algorithm design". Annual Conference on Aerospace Applications of Aknificial Intel-
IEEE Transactions on Software Enginieering SE-il,. 11 (1985). ligence, October. 1987. pp. 245-256,
1361- 1374.

2Z. Waters. R. C. 'The programmer's apprentice: a session Nvah
10. Kant. E., and Newell. A. An automadu" algorithm designer An KflEmacs". IEEE Transactions on Soiware Engiierin i- 1>?, 11
initial implementation. Proceedings of Thc_ National Conference on (1983), 1296-1320.

Artiicil Itellgene, ugus. 183,pp. 77-81.29. Yost. (3. R. TAQ: Soar Task Acquisition System User Majnual.

11. Kant. E. and Newaell. A. "Problem s&'Iing techniques for the
design of algorithms". Informaiion Proc.s.ing and Managemnrt 20,
1.2 (1984). 97-118.

